CONTROLLERS FOR MULTIPLEXED CABINETS XM670K- XM679K

GENERAL WARNING

PLEASE READ BEFORE USING THIS MANUAL

- This manual is part of the product and should be kept near the instrument for easy and quick
- The instrument shall not be used for purposes different from those described hereunder. It cannot be used as a safety device
- Check the application limits before proceeding.

SAFETY PRECAUTIONS

- Check the supply voltage is correct before connecting the instrument.
- Do not expose to water or moisture: use the controller only within the operating limits avoiding sudden temperature changes with high atmospheric humidity to prevent formation of condensation
- Warning: disconnect all electrical connections before any kind of maintenance.
- Fit the probe where it is not accessible by the End User. The instrument must not be opened.
- In case of failure or faulty operation send the instrument back to the distributor or to "Dixell S.p.A." (see address) with a detailed description of the fault.
- Consider the maximum current which can be applied to each relay (see Technical Data).
- Ensure that the wires for probes, loads and the power supply are separated and far enough from each other, without crossing or intertwining.
- In case of applications in industrial environments, the use of mains filters (our mod. FT1) in parallel with inductive loads could be useful.

2.GENERAL DESCRIPTION

The XM670K/XM679K are high level microprocessor based controllers for multiplexed cabinets suitable for applications on medium or low temperature. It can be inserted in a LAN of up to 8 different sections which can operate, depending on the programming, as stand alone controllers or following the commands coming from the other sections. The XM670K/XM679K are provided with 6 relay outputs to control the solenoid valve, defrost - which can be either electrical or hot gas - the evaporator fans, the lights, an auxiliary output and an alarm output and with one output to drive pulsed electronic expansion valves (only XM679K). The devices are also provided with four probe inputs, one for temperature control, one to control the defrost end temperature of the evaporator, the third for the display and the fourth can be used for application with virtual probe or for inlet/outlet air temperature measurement. The model XM679K is provided by other two probes that have to be used for superheat measurement and regulation. Finally, the XM670K/XM679K are equipped with the three digital inputs (free contact) fully configurable by parameters.

The instruments are equipped with the HOTKEY connector that permits to be programmed in a simple way. Direct serial output RS485 ModBUS-RTU compatible permits a simple XWEB interfacing. RTC are available as options. The HOTKEY connector can be used to connect X-REP display (Depending on the model).

3.USER INTERFACE

To display and modify target set point; in programming mode it selects a parameter or confirm an operation

By holding it pressed for 3s when max or min temperature is displayed it will be erased

In programming mode it browses the parameter codes or increases the displayed

By holding it pressed for 3s the give access to the "Section" menu.

By pressing and releasing this key you get the access to fast access menu

in programming mode it browses the parameter codes or decreases the displayed

By pressing and releasing this key you can activate or deactivate the auxiliary output By holding it pressed for 3s the defrost is started.

Switch ON and OFF the room light.

By pressing for about 3s switch ON and OFF the instrument.

Measurement unit

Measurement unit

Measurement unit

KEY COMBINATIONS

BAR

PSI

To lock and unlock the keyboard

To enter the programming mode.

To exit the programming mode.

3.1USE OF LEDS

Each LED function is described in the following table

LED	MODE	FUNCTION
*	ON	Compressor and valve regulation enabled, to see valve opening percentage you should see the fast access menu
*	Flashing	Anti-short cycle delay enabled
恭	ON	Defrost enabled
*	Flashing	Drip time in progress
(!)	ON	An alarm is occurring
※)	ON	Energy saving enabled
\$	ON	The fan is running
\$	Flashing	Door opened or delay to restart fan after defrost
AUX	ON	The auxiliary relay is ON
°C/°F/Bar/PSI	ON	Measurement unit
°C/°F/Bar/PSI	Flashing	Programming phase
2	ON	The controller is working in "ALL" mode
<u> </u>	Flashing	The controller is working in remote virtual display mode
Œ	Flashing	During the CLOCK modification (if clock is present)

3.2HOW TO ENTER INTO FAST ACCESS MENU

Press and release the A key

First Label will be displayed. By pressing the ▲ or ▼ keys it's possible to navigate the menu

3.3HOW TO SEE THE MAX AND MIN TEMPERATURE RECORDED

Press and release the A key

First Label will be displayed. By pressing the ▲ or ▼ keys it's possible to navigate the menu. Search the L°t label and press SET to see minimum temperature; search the H°t label and press SET to see maximum temperature:

3.4HOW TO SEE AND MODIFY THE SET POINT

Push for about 3 seconds the SET key: the display will show the Set point value;

To store the new set point value push the SET key again or wait 10s.

The measurement unit starts blinking; To change the Set value push the ▲ or マ arrows within 10s.

3.5HOW TO START A MANUAL DEFROST

Push the DEF key for more than 3 seconds and a manual defrost will start.

3.6TO ENTER IN PARAMETERS LIST "PR1"

To enter the parameter list "Pr1" (user accessible parameters) operate as follows

1. Enter the Programming mode by pressing the SET and DOWN key for few seconds (measurement unit starts blinking).

2. The instrument will show the first parameter present in "Pr1"

3.7TO ENTER IN PARAMETERS LIST "PR2"

To access parameters in "Pr2"

- Enter the "Pr1" level
- Select "Pr2" parameter and press the "SET" key.
- The "PAS" flashing message is displayed, shortly followed by "0 -" with a flashing zero.
- Use ▲ or ▼ to input the security code in the flashing digit; confirm the figure by pressing "SET". The security code is "321"
- If the security code is correct the access to "Pr2" is enabled by pressing "SET" on the last digit Another possibility is the following: after switching ON the instrument the user can push Set and DOWN keys within 30 seconds.

NOTE: each parameter in "Pr2" can be removed or put into "Pr1" (user level) by pressing "SET" + ▼. When a parameter is present in "Pr1" LED (1) is on.

3.8HOW TO CHANGE THE PARAMETER VALUE

- 1. Enter the Programming mode.
- Select the required parameter with ▲ or ▼.
- 3. Press the "SET" key to display its value (measurement unit starts blinking).
- 4. Use ▲ or ▼ to change its value.
- Press "SET" to store the new value and move to the following parameter.

To exit: Press SET + UP or wait 15s without pressing a key.

NOTE: the new programming is stored even when the procedure is exited by waiting the time-out.

3.90N/OFF FUNCTION

By pushing the ON/OFF key, the instrument shows "OFF". During the OFF status, all the relays are switched OFF and the regulations are stopped; if a monitoring system is connected, it does not record the instrument data and alarms.

N.B. During the OFF status the Light and AUX buttons are active.

4.FAST ACCESS MENU

FAST ACCESS MENU

- HM Fast access to Clock settings; (if present)
- Fast access to analog output reading; (if present)
- Superheat: shows the actual superheat value; (Only XM679K) SH
- оРР Valve opening percentage: shows actual opening percentage of the valve; (Only XM679K)
- dP1 Probe 1 value displaying shows the temperature measured by probe 1, dP2 Probe 2 value displaying shows the temperature measured by probe 2;
- Probe 3 value displaying shows the temperature measured by probe 3;
- Probe 4 value displaying shows the temperature measured by probe 4;
- dP5 Probe value displaying shows the temperature value measured by probe 5, (Only XM679K)
- dP6 Probe 6 value displaying shows the temperature measured by probe 6; (Only XM679K)
- dPP Pressure probe value shows the value of pressure measured by pressure transducer; (Only XM679K)
- rPP Remote pressure probe value show the value of pressure received by remote pressure probe connected to other XM600K device; (Only XM679K)
- minimum measured temperature shows the minimum temperature read by the regulation probe;
- H°t Maximum measured temperature shows the maximum temperature read by the regulation
- dРr Virtual regulation probe value shows the value measured by virtual regulation probe;
- dPd Virtual defrost probe value shows the value measured by virtual defrost probe;
- Virtual fans probe value shows the value measured by virtual fan probe
- rSE Real set point: shows the set point used during the energy saving cycle or during the continuous cvcle.

5.THE SECTION MENU

This menu allows the user to access to a particular feature of the XM series related to the LAN (Local Area Network) of controllers. A single keyboard, depending on the programming of this menu, is able to control either the module of the local section of the LAN or ALL. The possibilities are: LOC: the keyboard controls and display the value, the status and the alarms of the local section of the LAN; ALL: the command given by the keyboard are effective on all the sections of the LAN.

- Push the A key for more than 3 seconds
- The label corresponding to the section controlled by the keyboard will be displayed.
- With A or V key select the section you want to control.
- Press "Set" key to confirm and exit

REAL TIME CLOCK FUNCTIONS (IF PRESENT)

The following functions are available only if the Real Time Clock is present. To get access to real time clock submenu:

- 1. Enter the Programming mode by pressing the SET and DOWN key for few seconds (measurement unit starts blinking).
- 2 The instrument will show RTC label:
- 3. Press SET. You are in RTC function menu:

5.1TO SET CURRENT TIME AND DAY

- Hur Current hour (0 ÷ 23 h)
- Min Current minute (0 ÷ 59min)
- dAY Current day (Sun ÷ SAt)
- Hd1 First weekly holiday (Sun + nu) Set the first day of the week which follows the holiday times.
- Hd2 Second weekly holiday (Sun ÷ nu) Set the second day of the week which follows the holiday
- Hd3 Third weekly holiday (Sun ÷ nu) Set the third day of the week which follows the holiday times.
- N.B. Hd1.Hd2.Hd3 can be set also as "nu" value (Not Used).

5.2TO SET ENERGY SAVING TIMES

- ILE Energy Saving cycle start during workdays: (0 ÷ 23h 50 min.) During the Energy Saving cycle the set point is increased by the value in HES so that the operation set point is SET + HES.
- dLE Energy Saving cycle length during workdays: (0 ÷ 24h 00 min.) Sets the duration of the Energy Saving cycle on workdays.
- Energy Saving cycle start on holidays. (0 ÷ 23h 50 min.)
- dSE Energy Saving cycle length on holidays (0 ÷ 24h 00 min.)
- HES Temperature increase during the Energy Saving cycle (-30÷30°C / -54÷54°F) sets the increasing value of the set point during the Energy Saving cycle.

TO SET TIMED DEFROST PARAMETERS

- Ld1÷Ld6 Workday defrost start (0 ÷ 23h 50 min.) These parameters set the beginning of the eight programmable defrost cycles during workdays. Ex. When Ld2 = 12.4 the second defrost starts at 12.40 during workdays
- Sd1÷Sd6 Holiday defrost start (0 ÷ 23h 50 min.) These parameters set the beginning of the eight programmable defrost cycles on holidays. Ex. When Sd2 = 3.4 the second defrost starts at 3.40 on

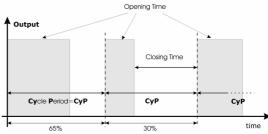
To disable a defrost cycle set it to "nu" (not used). Ex. If Ld6=nu; the sixth defrost cycle is disabled

ELECTRONIC EXPANSION VALVE MENU (ONLY FOR XM679K)

- 1. Enter the Programming mode by pressing the SET and DOWN key for few seconds (measurement unit starts blinking)
- 2. Press arrows until the instrument shows EEU label;
- 3. Press SET. You are now in EEV function menu;

6.CONTROLLING LOADS

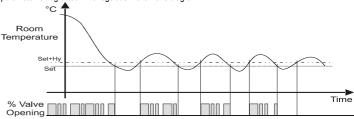
THE SOLENOID VALVE


The regulation is performed according to the temperature measured by the thermostat probe that can be physical probe or virtual probe obtained by a weighted average between two probes (see parameters table description) with a positive differential from the set point. If the temperature increases and reaches set point plus differential the solenoid valve is opened and then it is closed when the temperature reaches the set point value again.

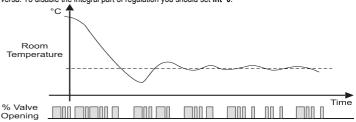
In case of fault in the thermostat probe the opening and closing time of solenoid valve is configured by "Con" and "CoF" parameters.

6.1STANDARD REGULATION AND CONTINUOUS REGULATION

The regulation can be performed in two ways: the goal of the first way (standard regulation) is reaching the best superheat via a classic temperature regulation obtained using hysteresis. The second way, permits to use the valve to realise an high performance temperature regulation with a good factor of superheat precision. This second possibility, it can be used only in centralized plants and it is available only with electronic expansion valve by selecting CrE=Y parameter


In any case, the regulation is performed via PI regulator that gives the opening percentage to the valve via PWM modulation explained as follow. Opening percentage is obtained from average of Opening Time respect to CyP time period like following diagram:

With opening percentage we mean percentage of cycle period where valve is open. For example, if CyP=6s (standard value) by saying: "The valve is opened at 50%"; this means that the valve is opened for 3s during cycle period.


First kind of regulation:

In this case, the Hy parameter is the differential for standard ON/OFF regulation. In this case the int parameter is neglected. The regulation follow this diagram:

Second kind of regulation - Continuous regulation (only XM679K):

In this case, the Hy parameter is the proportional band of PI in charge of room temperature regulation and we advise to used at least Hy=5.0°C/10°F. The int parameter is the integral time of the same PI regulator. Increasing int parameter the PI regulator become slow in reaction and of course is true vice versa. To disable the integral part of regulation you should set int=0.

6.2DEFROST

Defrost starting

In any case, the device check the temperature read by configured defrost probe before starting defrost procedure, after that:

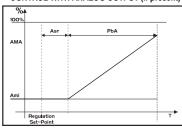
- (If RTC is present)Two defrost modes are available through the "tdF" parameter: defrost with electrical heater and hot gas defrost. The defrost interval is controlled by parameter "EdF": (EdF = rtc) defrost is made in real time depending on the hours set in the parameters Ld1..Ld6 in workdays and in Sd1...Sd6 on holidays; (EdF = in) the defrost is made every "IdF" time;
- defrost cycle starting can be operated locally (manual activation by means of the keyboard or digital input or end of interval time) or the command can come from the Master defrost unit of the LAN. In this case the controller will operate the defrost cycle following the parameters it has programmed but, at the end of the drip time, will wait that all the other controllers of the LAN finish their defrost cycle before to re-start the normal regulation of the temperature according to dEM parameter;
- Every time any of the controller of the LAN begin a defrost cycle it issue the command into the network making all the other controllers start their own cycle. This allows a perfect synchronisation of the defrost in the whole multiplexed cabinet according to **LMd** parameter;
- Selecting dPA and dPb probes and by changing the dtP and ddP parameters the defrost can be started when the difference between dPA and dPb probes is lower than dtP for all ddP time. This is useful to start defrost when a low thermal exchange is detected. If ddP=0 this function is disabled:

Defrost ending

- When defrost is started via rtc, the maximum duration of defrost is obtained from Md parameter and the defrost end temperature is obtained from dtE parameter (and dtS if two defrost probes
- If dPA and dPb are present and d2P=y the instrument stops the defrost procedure when dPAis higher than dtE temperature and $dP\dot{b}$ is higher than dtS temperature.

At the end of defrost the drip time is controlled through the "Fdt" parameter

6.3FANS

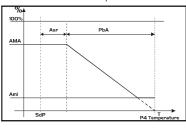

CONTROL WITH RELAY

The fan control mode is selected by means of the "FnC" parameter:

- C-n = running with the solenoid valve, OFF during the defrost;
- C-y = running with th1e solenoid valve, ON during the defrost;
- **O-n** = continuous mode, OFF during the defrost;
- **O-y** = continuous mode, ON during the defrost;

An additional parameter "FSt" provides the setting of temperature, detected by the evaporator probe, above which the fans are always OFF. This can be used to make sure circulation of air only if his temperature is lower than set in "FSt".

CONTROL WITH ANALOG OUTPUT (if present)



The modulating output (trA=rEG) works in proportional way (excluding the first AMt seconds where the fans speed is the maximum). The regulation set point is relative to regulation set point and is indicated by ASr. the proportional band is always located above SET+ASr value and its value is PbA. The fan are at minimum speed (AMi) when the temperature read by fan probe is SET+ASr and the fan is at maximum speed (AMA) when the temperature is SET+ASr+PbA

6.4ANTI SWEAT HEATERS (IF PRESENT)

This control is performed when trA=AC. In this case, there is two way to control the anti-sweat heaters:

- Without real dew-point information: in this case the default value for dew-point is used (SdP parameter).
- Receiving dew-point from XWEB5000 system: the SdP parameter is overwrote when valid value for dew-point is received from XWEB

The P4 probe is used to perform the regulation and it should be placed on the showcase glass. In case of P4 error or if P4 is absent the output is at \mathbf{AMA} value for the \mathbf{AMt} time then the output is at 0 value for the time 255-AMt time performing a simple PWM modulation.

6.5AUXILIARY OUTPUT

The auxiliary output is switch ON and OFF by means of the corresponding digital input or by pressing and releasing the down arrow key

7.PARAMETER LIST

REGULATION

- Access to CLOCK submenu (if present); rtC
- EEU Access to EEV submenu (only XM679K);
- Differential: (0,1÷25,5°C; 1÷45°F): Intervention differential for set point, always positive. Hy Solenoid valve Cut IN is Set Point Plus Differential (Hy). Solenoid valve Cut OUT is when the temperature reaches the set point
- Int Integral time for room temperature regulation (Only XM679K): $(0 \div 255 \text{ s})$ integral time for room temperature PI regulator. 0= no integral action;
- CrF Continuous regulation activation (Only XM679K): (n+Y) n= standard regulation; Y= continuous regulation. Use it only in centralized plants:
- LS Minimum set point limit: (-55.0°C+SET; -67°F÷SET) Sets the minimum acceptable value for the set point.
- US Maximum set point limit: (SET+150°C; SET+302°F) Set the maximum acceptable value for
- OdS Outputs activation delay at start up: (0÷255 min) This function is enabled at the initial start up of the instrument and inhibits any output activation for the period of time set in the parameter. (AUX and Light can work)
- Anti-short cycle delay: (0÷60 min) interval between the solenoid valve stop and the following AC
- CCt Compressor ON time during continuous cycle: (0.0÷24.0h; resolution 10min) Allows to set the length of the continuous cycle: compressor stays on without interruption for the CCt time. Can be used, for instance, when the room is filled with new products.
- CCS Set point for continuous cycle: (-55÷150°C / -67÷302°F) it sets the set point used during the continuous cycle
- solenoid valve ON time with faulty probe: (0÷255 min) time during which the solenoid valve Con is active in case of faulty thermostat probe. With COn=0 solenoid valve is always OFF.
- solenoid valve OFF time with faulty probe: (0÷255 min) time during which the solenoid valve CoF is off in case of faulty thermostat probe. With COF=0 solenoid valve is always active.

DISPLAY

- CF Temperature measurement unit: °C=Celsius; °F=Fahrenheit. !!! WARNING !!! When the measurement unit is changed the parameters with temperature values have to be checked.
- Pressure mode: (rEL or AbS) it defines the mode to use the pressure. !!! WARNING !!! the setting of PrU is used for all the pressure parameters. If PrU=rEL all pressure parameters are in relative pressure unit, if PrU=AbS all pressure parameters are in absolute pressure unit. (Only XM679K)
- Pressure measurement unit: (bAr PSI MPA) it selects the pressure measurement units. PMU MPA= the value of pressure measured by kPA*10. (Only XM679K)
- Way of displaying pressure: (tEM PrE) it permits showing the value measured by pressure probe with tEM= temperature or by PrE= pressure; (Only XM679K)
- Resolution (for °C): (in = 1°C; dE = 0.1 °C) allows decimal point display; rES

- Instrument display: (nP; P1; P2, P3, P4, P5, P6, tEr, dEF) it selects which probe is displayed by the instrument. P1, P2, P3, P4, P5, P6, tEr= virtual probe for thermostat, dEF= virtual probe for defrost
- Remote display: (nP: P1: P2. P3. P4. P5. P6. tEr, dEF) it selects which probe is displayed by red the X-REP. P1, P2, P3, P4, P5, P6, tEr= virtual probe for thermostat, dEF= virtual probe for
- dLy Display delay: (0 ÷24.0 m; resolution 10s) when the temperature increases, the display is updated of 1 °C/1°F after this time
- rPA Regulation probe A: (nP; P1; P2, P3, P4, P5) first probe used to regulate room temperature. If rPA=nP the regulation is performed with real value of rPb.
- Regulation probe B: (nP; P1; P2, P3, P4, P5) second probe used to regulate room rPb temperature. If rPb=nP the regulation is performed with real value of rPA
- rPF Regulation virtual probe percentage: (0 ÷ 100%) it defines the percentage of the rPA respect to rPb. The value used to regulate room temperature is obtained by:
 - value_for_room = (rPA*rPE + rPb*(100-rPE))/100

ELECTRONIC EXPANSION VALVE SUBMENU (Only XM679K)

- Kind of gas (R22, 134, 404, 407, 410, 507, CO2): Type of gas used by plant. Fundamental parameter for correct functioning of all system
- Superheat set point: $[0.1^{\circ}\text{C} \div 25.5^{\circ}\text{C}]$ $[1^{\circ}\text{F} \div 45^{\circ}\text{F}]$ it's the value used to regulate superheat SSH
- CyP
- Cycle Period: (1 ÷ 15s) it permits to set cycle time; Proportional band: (0.1 ÷ 60.0 / 1÷108°F) PI proportional band; Pb
- rS Band Offset: (-12.0 ÷ 12.0°C / -21÷21°F) PI band offset;
- inC Integration time: (0 ÷ 255s) PI integration time;
- Probe Error opening percentage: (0÷100%) if a temporary probe error occurs, valve opening percentage is PEo until PEd time is elapsed;
- PEd Probe Error delay before stopping regulation: (0÷239 sec. - On=unlimited) if probe error duration is bigger than PEd then valve totally closes. Pf message is showed. If PEd=On valve opening is PEo until probe error finishes
- OPF Start opening Percentage: (0÷100%) Opening valve percentage when start function is active. This phase duration is SFd time:
- **Start Function duration:** $(0.0 \div 42.0 \text{ min: resolution 10s})$ It sets start function duration and SFd post-defrost duration. During this phase the alarms are neglected;
- Opening Percentage after defrost phase: (0÷100%) Opening valve percentage when after defrost function is active. This phase duration is Pdd time;
- Post Defrost Function duration: (0.0 ÷ 42.0 min: resolution 10s) It sets start function duration Pdd and post-defrost duration. During this phase the alarms are neglected; MnF
- Maximum opening percentage at normal Functioning: (0÷100%) during regulation it sets the maximum valve opening percentage; **Delay before stopping valve regulation:** (0 ÷ 255s) When the cooling request goes off, the dCL
- electronic valve regulation can go on for the dCL time in order to prevent uncontrolled superheat variation:
- Forced opening percentage: (0÷100% nu) it permits to force the valve opening to the specified value. This value overwrite the value calculated by PID algorithm. !!!! WARNING !!!! to obtain the correct superheat regulation you have to set Fot=nu;
- tPP Type of Pressure Transducer: (PP - LAn) it sets type of pressure transducer to use: PP= $4\div20\text{mA}$ pressure transducer or ratiometric transducer $0\div5\text{V}$ depending on P5C parameter, LAn= the pressure signal arrives from another XM600K; Referred to Pb5
- Probe value At 4mA or At 0V: (-1.0 ÷ P20 bar / -14 ÷ PSI / -10 ÷ P20 kPA*10) pressure value PA4 measured by probe at 4mA or at 0V (related to PrM parameter) Referred to Pb5
- Probe value 20mA or At 5V: (PA4 ÷ 50.0 bar / 725 psi / 500 kPA*10) pressure value P20 measured by probe at 20mA or at 5V (related to PrM parameter) Referred to Pb5
- LPL Lower Pressure Limit for superheat regulation: (PA4 ÷ P20 bar / psi / kPA*10) when suction pressure comes down to LPL the regulation is performed with a LPL fixed value for pressure, when pressure comes back to LPL the normal pressure value is used. (related to PrM parameter)
- Maximum Operating Pressure threshold: (PA4 ÷ P20 bar / psi / kPA*10) if suction pressure MOP exceeds maximum operating pressure value, instrument signals situation with MOP alarm. (related to PrM parameter)
- LOP Lowest Operating Pressure threshold: (PA4 ÷ P20 bar / psi / kPA*10) if the suction pressure comes down to this value a low pressure alarm is signalled with LOP alarm. (related to PrM parameter)
- delta MOP-LOP: (0 ÷ 100%) when a MOP alarm occurs valve will close of the dML percentage dML every cycle period until MOP alarm is active. When LOP occurs valve will open of the dML percentage every cycle period until LOP alarm is active.
- MSH Maximum Superheat alarm: (LSH ÷ 80.0°C / LSH ÷ 144°F) when superheat exceeds this value an high superheat alarm is signalled after interval SHd
- LSH Lowest Superheat alarm: (0.0 ÷ MSH °C / 0÷MSH °F) when superheat goes down to this value a low superheat alarm is signalled after interval SHd SHv
- Superheat alarm Hysteresis: (0.1÷25.5°C/1÷45°F) hysteresis for superheat alarm deactivation Superheat alarm activation delay: (0.0 ÷ 42.0 min: resolution 10s) when a superheat alarm
- occurs, the time SHd have to pass before signalling alarm; FrC Fast-recovery Constant: (0÷100 s) permits to increase integral time when SH is below the setpoint. If FrC=0 fast recovery function is disabled.

DEFROST

- defrost Probe A: (nP; P1; P2, P3, P4, P5) first probe used for defrost. If rPA=nP the regulation is performed with real value of dPb
- dPb defrost Probe B: (nP; P1; P2, P3, P4, P5) second probe used for defrost. If rPB=nP the regulation is performed with real value of dPA.
- dPF defrost virtual probe percentage: (0÷100%) it defines the percentage of the dPA respect to dPb. The value used to regulate room temperature is obtained by
 - value_for_defrost= (dPA*dPE + dPb*(100-dPE))/100
- Defrost type: (EL in) EL = electrical heater; in = hot gas; tdF
- EdF Defrost mode: (rtc - in) (only if RTC is present) rtc= defrost activation via RTC; in= defrost activation with idf.
- Srt Heater set point during defrost: (-55.0 ÷ 150.0°C; -67 ÷ 302°F) if tdF=EL during the defrost the defrost relay perform an ON/OFF regulation with Srt as set point.
- Hyr Differential for heater: (0.1°C ÷ 25.5°C, 1°F ÷ 45°F) the differential for heater;

- Time out for heater: 0 ÷ 255 (min.) if the defrost probe temperature is bigger than Srt for all tod time the defrost ends altough the defrost probe temperature is lower than dtE or dtS. It permits to reduce defrost duration:
- Minimum temperature difference to start defrost: [0.1°C ÷ 50.0°C] [1°F ÷ 90°F] if the dtP difference between the two defrost probes stays lower than dtP for all ddP time the defrost is
- Delay before starting defrost (related to dtP): (0 ÷ 60 min) delay related to dtP. ddP
- **Defrost with two probes:** (n Y) n= only the dPA probe is used to defrost management; Y=defrost is managed with dPA probe and dPb probe. Defrost can performed only if both probe
- value are lower than dtE for dPA probe and dtS for dPb probe; **Defrost termination temperature (Probe A):** $(-55,0+50,0^{\circ}C;-67+122^{\circ}F)$ (Enabled only when dtE the evaporator probe is present) sets the temperature measured by the evaporator probe dPA which causes the end of defrost;
- Defrost termination temperature (Probe B): (-55,0÷50,0°C; -67÷122°F) (Enabled only when the evaporator probe is present) sets the temperature measured by the evaporator probe dPb which causes the end of defrost;
- Interval between defrosts: (0÷120h) Determines the time interval between the beginning of ldF two defrost cycles;
- Maximum duration of defrost: (0÷255 min) When dPA and dPb aren't present, it sets the MdF defrost duration, otherwise it sets the maximum duration for defrost:
- Start defrost delay: (0 ÷ 255 min) This is useful when different defrost start times are dSd necessary to avoid overloading the plant.
- Display during defrost: rt = real temperature; it = temperature reading at the defrost start; Set set point; dEF = "dEF" label;
- Defrost display time out: (0+255 min) Sets the maximum time between the end of defrost and dAd the restarting of the real room temperature display.
- Fdt Drain down time: (0÷255 min.) time interval between reaching defrost termination temperature and the restoring of the control's normal operation. This time allows the evaporator to eliminate water drops that might have formed due to defrost.
- dPo First defrost after start-up: y = Immediately; n = after the IdF time
- dAF Defrost delay after continuous cycle: (0+23.5h) time interval between the end of the fast freezing cycle and the following defrost related to it.

FAN

- Fan probe A: (nP; P1; P2, P3, P4, P5) first probe used for fan. If FPA=nP the regulation is performed with real value of FPB
- FPR Fan probe B: (nP; P1; P2, P3, P4, P5) second probe used for defrost. If FPB=nP the regulation is performed with real value of FPB:
- FPF Fan virtual probe percentage: (0÷100%) it defines the percentage of the FPA respect to FPb. The value used to regulate room temperature is obtained by:

value for defrost= (FPA*FPE + FPb*(100-FPE))/100

- Fan operating mode: C-n = running with the solenoid valve, OFF during the defrost; C-y = FnC running with the solenoid valve, ON during the defrost; O-n = continuous mode, OFF during the defrost; O-y = continuous mode, ON during the defrost;
- Fan delay after defrost: (0+255 min) The time interval between the defrost end and evaporator fans start.
- Temperature differential avoiding short cycles of fans (0.0 °C \div 50.0 °C; 0 °F \div 90 °F) If the FCt difference of temperature between the evaporator and the room probes is more than the value of the Fct parameter, the fans are switched on:
- Fan stop temperature: (-50+110°C; -58+230°F) setting of temperature, detected by FSt evaporator probe, above which the fan is always OFF
- FΗν Differential to restart fan: (0.1°C ÷ 25.5°C) (1°F ÷ 45°F) when stopped, fan restarts when fan probe reaches FSt-FHy temperature;
- Fan activation time after defrost: (0 ÷ 255 min.) it forces fan activation for indicated time; Fod
- Fan ON time: (0+15 min) with Fnc = C_n or C_y, (fan activated in parallel with compressor). it sets the evaporator fan ON cycling time when the compressor is off. With Fon =0 and FoF \neq 0 Fon the fan are always off, with Fon=0 and FoF =0 the fan are always off.
- Fan OFF time: (0÷15 min) with Fnc = C_n or C_y, (fan activated in parallel with compressor). it FoF sets the evaporator fan off cycling time when the compressor is off. With Fon =0 and FoF ≠ 0 the fan are always off, with Fon=0 and FoF =0 the fan are always off.

MODULATING OUTPUT (AnOUT) if present

- Kind of regulation with PWM output: (UAL rEG AC) it selects the functioning for the PWM trA output if CoM isn't equal to OA7. UAL= the output is at FSA value; rEG= the output is regulated with fan algorithm described in fan section; AC= anti-sweat heaters control (require the XWEB5000 system);
- SOA Fixed value for analog output: (0 ÷ 100%) value for the output if trA=UAL;
- SdP **Default value for Dew point**: (-55,0÷50,0°C; -67÷122°F) default value of dew point used when there is no supervising system (XWEB5000). Used only when trA=AC;

 Dew-point offset (trA=AC) / Differential for modulating fan regulation (trA=rEG): (-25.5°C
- ASr ÷ 25.5°C) (-45°F ÷ 45°F);
- Differential for anti-sweat heaters: (0.1°C ÷ 25.5°C) (1°F ÷ 45°F) PbA
- Minimum value for analog output: (0÷AMA)
- AMA Maximum value for analog output: (Ami ÷ 100)
- Anti-sweat heaters cycle period (trA=AC)/ Time with fan at maximum speed (trA=rEG): **AMt** (0÷255 s) when the fan starts, during this time the fan is at maximum speed;

ALARMS

- rAL Probe for temperature alarm: (nP - P1 - P2 - P3 - P4 - P5 - tEr) it selects the probe used to signal alarm temperature
- ALC Temperature alarm configuration: rE = High and Low alarms related to Set Point; Ab = High and low alarms related to the absolute temperature.
- High temperature alarm setting: (ALC= rE, 0 + 50°C or 90°F / ALC= Ab, ALL + 150°C or ALU 302°F) when this temperature is reached and after the ALd delay time the HA alarm is enabled. Low temperature alarm setting: (ALC = rE, 0 + 50 °C or 90°F / ALC = Ab, - 55°C or - 67°F +
- ALU) when this temperature is reached and after the ALd delay time, the LA alarm is enabled. AHy Differential for temperature alarm: (0.1°C ÷ 25.5°C / 1°F ÷ 45°F) Intervention differential for recovery of temperature alarm;
- Temperature alarm delay: (0÷255 min) time interval between the detection of an alarm condition and the corresponding alarm signalling. ALd

- High temperature alarm (defrost probe): (ALC= rE, 0 + 50°C or 90°F / ALC= Ab, ALL ÷ 150°C or 302°F) when this temperature is reached and after the ddA delay time the HAd alarm is enabled.
- dLL Low temperature alarm (defrost probe): (ALC = rE , 0 + 50 °C or 90°F / ALC = Ab , - 55°C or - 67°F + ALU) when this temperature is reached and after the ALd delay time, the LAd alarm is
- Differential for temperature alarm (defrost probe): $(0.1^{\circ}\text{C} \div 25.5^{\circ}\text{C} \text{ / } 1^{\circ}\text{F} \div 45^{\circ}\text{F})$ dAH Intervention differential for recovery of temperature alarm;
- Abb Temperature alarm delay (defrost probe): (0÷255 min) time interval between the detection of an alarm condition and the corresponding alarm signalling. High temperature alarm (defrost probe): (ALC= rE, $0 + 50^{\circ}$ C or 90° F / ALC= Ab, ALL +
- FLU 150°C or 302°F) when this temperature is reached and after the FAd delay time the HAF alarm is enabled
- Low temperature alarm (defrost probe): (ALC = rE , 0 + 50 °C or 90°F / ALC = Ab , 55°C or - 67°F + ALU) when this temperature is reached and after the FAd delay time, the LAF alarm is enabled
- Differential for temperature alarm (defrost probe): $(0.1^{\circ}\text{C} \div 25.5^{\circ}\text{C} \text{ / } 1^{\circ}\text{F} \div 45^{\circ}\text{F})$ FAH Intervention differential for recovery of temperature alarm;
- FAd Temperature alarm delay (defrost probe): (0÷255 min) time interval between the detection of an alarm condition and the corresponding alarm signalling.
- dAO Delay of temperature alarm at start-up: (0min+23h 50min) time interval between the detection of the temperature alarm condition after the instrument power on and the alarm signalling.
- Alarm delay at the end of defrost: (0÷255 min) Time interval between the detection of the EdA temperature alarm condition at the end of defrost and the alarm signalling
- dot Temperature alarm exclusion after door open:
- Stop regulation interval (Only XM679K): (0.0÷24.0 hours: tens of minutes) after regulating Sti continuously for Sti time, the valve closes for Std time in order to prevent, ice creation
- Stop duration (Only XM679K): (0÷60 min.) it defines stop regulation time after Sti. During this Std stop display shows StP message
- nMS Maximum number of regulation pauses (Only XM679K): (nu ÷ 255) maximum number of regulation pauses before signalling a lock alarm. nu= not used;
- OA6 Sixth relay configuration (CPr-dEF-Fan-ALr-LiG-AUS-db-OnF): CPr= relay works as a compressor or solenoid valve relay; dEF= relay works as defrost relay; Fan= relay works as a Fan relay; ALr= activation with alarm conditions; LiG= light activation; AUS= auxiliary relay, it can be switched ON/OFF also by key; db= dead band regulation (not compatible with CrE=y); OnF= ON/OFF functioning;

OPTIONAL OUTPUT (AnOUT) if present

- Modulating output configuration (if CoM=0A7): (CPr dEF FAn ALr LiG AUS db) it selects the functioning of the modulating output in case of CoM=OA7: CPr= compressor; dEF= defrost; FAn= Fan; Alr= Alarm; LiG= Light; AUS= auxiliary; db= neutral zone (not available with CrE=Y)
- Type of functioning modulating output:
 - For models with PWM / O.C. output → PM5= PWM 50Hz; PM6= PWM 60Hz; OA7= two state, it can be used as an open collector output;
 - For models with 4÷20mA / 0÷10V output > Cur= 4÷20mA current output; tEn= 0÷10V voltage output;
- AOP Alarm relay polarity: cL= normally closed; oP= normally opened;
- Auxiliary output is unrelated to ON/OFF device status: n= if the instrument is switched off iAU also the auxiliary output is switched off; Y= the auxiliary output state is unrelated to the ON/OFF device status

DIGITAL INPUTS

- Digital input 1 polarity: (cL oP) CL: the digital input is activated by closing the contact; OP: the digital input is activated by opening the contact.
- i1F Digital input 1 function: (EAL - bAL - PAL - dor - dEF - AUS - LiG - OnF - Htr - FHU - ES - Hdy) EAL= external alarm; bAL= serious external alarm; PAL= pressure switch activation; dor= door open; dEF= defrost activation; AUS= auxiliary activation; LiG= light activation; OnF= switch on/off the instrument; Htr= change type of action; FHU= not used; ES= activate energy saving: Hdv= activate holiday function:
- Time interval/delay for digital input alarm: (0+255 min.) Time interval to calculate the number d1d of the pressure switch activation when i1F=PAL. If I1F=EAL or bAL (external alarms), "d1d" parameter defines the time delay between the detection and the successive signalling of the alarm. If i1F=dor this is the delay to activate door open alarm
- i2P Digital input 2 polarity: (cL - oP) CL: the digital input is activated by closing the contact; OP: the digital input is activated by opening the contact.
- Digital input 2 function: (EAL DAL PAL dor dEF AUS LiG OnF Htr FHU ES Hdy) EAL= external alarm; bAL= serious external alarm; PAL= pressure switch activation; i2F dor= door open; dEF= defrost activation; AUS= auxiliary activation; LiG= light activation; OnF= switch on/off the instrument; Htr= change type of action; FHU= not used; ES= activate energy saving; Hdy= activate holiday function;
- Time interval/delay for digital input alarm: (0+255 min.) Time interval to calculate the number of the pressure switch activation when i2F=PAL. If I2F=EAL or bAL (external alarms), "d2d" parameter defines the time delay between the detection and the successive signalling of the alarm. If i2F=dor this is the delay to activate door open alarm
- i3P Digital input 3 polarity: (cL - oP) CL: the digital input is activated by closing the contact; OP:
- the digital input is activated by opening the contact.

 Digital input 3 function: (EAL bAL PAL dor dEF AUS LiG OnF Htr FHU ES i3F - Hdy) EAL= external alarm; bAL= serious external alarm; PAL= pressure switch activation; dor= door open; dEF= defrost activation; AUS= auxiliary activation; LiG= light activation; OnF= switch on/off the instrument; Htr= change type of action; FHU= not used; ES= activate energy saving; Hdy= activate holiday function;
- Time interval/delay for digital input alarm: (0+255 min.) Time interval to calculate the number of the pressure switch activation when i3F=PAL. If i3F=EAL or bAL (external alarms), "d3d" parameter defines the time delay between the detection and the successive signalling of the alarm. If i3F=dor this is the delay to activate door open alarm
- nPS Pressure switch number: (0 ÷15) Number of activation of the pressure switch, during the "d#d" interval, before signalling the alarm event (I2F= PAL). If the nPS activation in the did time is reached, switch off and on the instrument to restart normal regulation.

- Compressor and fan status when open door: no = normal; Fan = Fan OFF; CPr = Compressor OFF; F C = Compressor and fan OFF
- Outputs restart after doA alarm: no = outputs not affected by the doA alarm; yES = outputs rrd restart with the doA alarm:

RTC SUBMENU (if present)

- CbF Clock Presence (n÷y): it permits to disable or enable the clock;
- Current hour (0 ÷ 23 h) Hur
- Current minute (0 ÷ 59min) Min
- dAY Current day (Sun ÷ SAt)
- First weekly holiday (Sun ÷ nu) Set the first day of the week which follows the holiday times
- Second weekly holiday (Sun ÷ nu) Set the second day of the week which follows the holiday Hd2
- Hd3 Third weekly holiday (Sun ÷ nu) Set the third day of the week which follows the holiday times.
- Energy Saving cycle start during workdays: (0 ÷ 23h 50 min.) During the Energy Saving cycle the set point is increased by the value in HES so that the operation set point is SET + ILE
- dLE Energy Saving cycle length during workdays: (0 ÷ 24h 00 min.) Sets the duration of the Energy Saving cycle on workdays.
- Energy Saving cycle start on holidays. (0 ÷ 23h 50 min.) ISE
- Energy Saving cycle length on holidays (0 ÷ 24h 00 min.) dSF
- Temperature increase during the Energy Saving cycle (-30 \div 30°C / -54 \div 54°F) sets the HES
- increasing value of the set point during the Energy Saving cycle. $\textbf{Ld1+Ld6 Workday defrost start } (0 \div 23h \ 50 \ \text{min.}) \ These parameters set the beginning of the eight$ programmable defrost cycles during workdays. Ex. When Ld2 = 12.4 the second defrost starts at 12.40 during workdays.
- Sd1÷Sd6 Holiday defrost start (0 ÷ 23h 50 min.) These parameters set the beginning of the eight programmable defrost cycles on holidays. Ex. When Sd2 = 3.4 the second defrost starts at 3.40 on holidays.

ENERGY SAVING

- Energy saving probe selection: (nP P1 P2 P3 P4 P5 tEr)
- HFS Temperature increase during the Energy Saving cycle : (-30÷30°C / -54÷54°F) sets the increasing value of the set point during the Energy Saving cycle.
- PEL Energy saving activation when light is switched off: (n÷Y) n= function disabled; Y= energy saving is actived when the light is switched off and vice versa;

LAN MANAGEMENT

- LMd Desfrost synchronisation: v= the section send a command to start defrost to oher controllers. n= the section don't send a global defrost command
- Type of end defrost: n= the of the LAN defrost are indipendent: v= the end of the defrost are dFM
- L.A.N. set-point synchronisation: y= the section set-point, when modified, is updated to the same value on all the other sections; n= the set-point value is modified only in the local section
- LdS L.A.N. display synchronisation: y= the value displayed by the section is sent to all the other sections; n= the set-point value is modified only in the local section
- LOF L.A.N. On/Off synchronisation this parameter states if the On/Off command of the section will act on all the other ones too: y= the On/Off command is sent to all the other sections; n= the On/Off command acts only in the local section
- L.A.N. light synchronisation this parameter states if the light command of the section will act on all the other ones too: y= the light command is sent to all the other sections; n= the light command acts only in the local section
- L.A.N. AUX output synchronisation this parameter states if the AUX command of the section will act on all the other ones too: y= the light command is sent to all the other sections; n= the light command acts only in the local section
- LES $\textbf{L.A.N. energy saving} \quad \textbf{synchronisation} \ \, \textbf{this parameter states if the energy saving command}$ of the section will act on all the other ones too: y= the Energy Saving command is sent to all the other sections; n= the Energy Saving command acts only in the local section
- LSd Remote probe display: this parameter states if the section has to display the local probe value or the value coming from another section: y= the displayed value is the one coming from another section (which has parameter LdS = y); n= the displayed value is the local probe one.
- Remote pressure probe: n= the value of pressure probe is read from local probe; Y= the value of pressure probe is sent via LAN;
- StM Solenoid activation via LAN: n= not used; Y= a generic cooling requests from LAN activate the solenoid valve connected to compressor relay:

PROBE CONFIGURATION

- P1C Probe 1 configuration: (nP - Ptc - ntc - PtM) nP= not present: PtC= Ptc: ntc= Ptc: PtM= Pt1000;
- Ot Probe 1 calibration: (-12.0+12.0°C/ -21+21°F) allows to adjust possible offset of the thermostat probe
- P2C Probe 2 configuration: (nP - Ptc - ntc - PtM) nP= not present; PtC= Ptc; ntc= Ptc; PtM= Pt1000
- OF Probe 2 calibration: (-12.0+12.0°C/ -21+21°F) allows to adjust possible offsets of the evaporator probe
- P3C Probe 3 configuration: (nP - Ptc - ntc - PtM) nP= not present; PtC= Ptc; ntc= Ptc; PtM= Pt1000:
- Probe 3 calibration: (-12.0+12.0°C/ -21+21°F) allows to adjust possible offset of the probe 3. P4C Probe 4 configuration: (nP - Ptc - ntc - PtM) nP= not present; PtC= Ptc; ntc= Ptc; PtM=
- Probe 4 calibration: (-12.0+12.0°C/ -21+21°F) allows to adjust possible offset of the probe 4.
- P5C Probe 5 configuration: (nP - Ptc - ntc - PtM - 420 - 5Vr) nP= not present; PtM= Pt1000; 420= 4+ 20mA; 5Vr= 0+5V ratiometric; (Only XM679K)

 Probe 5 calibration: (-12.0+12.0°C/ -21+21°F) allows to adjust possible offset of the probe 5.
- 05 (Only XM679K)
- P60 Probe 6 configuration: (nP - Ptc - ntc - PtM) nP= not present; PtC= Ptc; ntc= Ptc; PtM= Pt1000; (Only XM679K)
- 06 Probe 6 calibration: (-12.0+12.0°C/ -21+21°F) allows to adjust possible offset of the probe 6. (Only XM679K)

SERVICE - READ ONLY

- CLt Coling time percentage: it shows the effective cooling time calculated by XM600 during regulation:
- Time to next defrost; it shows time before the next defrost if interval defrost is selected: tMd
- LSn L.A.N. section number (1 ÷ 5) Shows the number of sections available in the L.A.N.
- L.A.N. serial address (1 ÷ LSn) Identifies the instrument address inside local network of Lan multiplexed cabinet controller.
- RS485 serial address (1÷247): Identifies the instrument address when connected to a Adı ModBUS compatible monitoring system.
- Rel Release software: (read only) Software version of the microprocessor.
- Ptb Parameter table: (read only) it shows the original code of the dixel parameter map.
 - Access to the protected parameter list (read only).

8.DIGITAL INPUTS

Pr2

The XM600 series can support up to 3 free of voltage contact configurable digital inputs (depending on the models). They are configurable via i#F parameter

8.1GENERIC ALARM (EAL)

As soon as the digital input is activated the unit will wait for "did" time delay before signalling the "EAL" alarm message. The outputs status don't change. The alarm stops just after the digital input is deactivated

8.2SERIOUS ALARM MODE (BAL)

When the digital input is activated, the unit will wait for "did" delay before signalling the "BAL" alarm message. The relay outputs are switched OFF. The alarm will stop as soon as the digital input is de-

8.3PRESSURE SWITCH (PAL)

If during the interval time set by "d#d" parameter, the pressure switch has reached the number of activation of the "nPS" parameter, the "CA" pressure alarm message will be displayed. The compressor and the regulation are stopped. When the digital input is ON the compressor is always OFF. If the nPS activation in the d#d time is reached, switch off and on the instrument to restart normal regulation.

8.4DOOR SWITCH INPUT (dor)

It signals the door status and the corresponding relay output status through the "odc" parameter: no = normal (any change); Fan = Fan OFF; OPr = Compressor OFF; F_C = Compressor and fan OFF. Since the door is opened, after the delay time set through parameter "d#d", the door alarm is enabled, the display shows the message "dA" and the regulation restarts after rrd time. The alarm stops as soon as the external digital input is disabled again. With the door open, the high and low temperature alarms are disabled.

8.5START DEFROST (DEF)

It executes a defrost if there are the right conditions. After the defrost is finished, the normal regulation will restart only if the digital input is disabled otherwise the instrument will wait until the "Mdf" safety time is expired.

8.6RELAY AUX ACTUATION (AUS)

This function allows to turn ON and OFF the auxiliary relay by using the digital input as external switch.

8.7RELAY LIGHT ACTUATION (LIG)

This function allows to turn ON and OFF the light relay by using the digital input as external switch.

8.8REMOTE ON/OFF (ONF)

This function allows to switch ON and OFF the instrument.

8.9KIND OF ACTION (HTR)

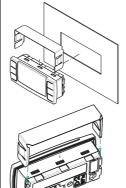
This function allows to change the kind of regulation from cooling to heating and vice versa.

8.10FHU - NOT USED

This function allows to change the kind of regulation from cooling to heating and viceversa.

8.11ENERGY SAVING INPUT (ES)

The Energy Saving function allows to change the set point value as the result of the SET+ HES (parameter) sum. This function is enabled until the digital input is activated.


8.12CONFIGURABLE INPUT - HOLIDAY FUNCTION (HDY)

In Holiday function Energy saving and defrost cycles follow holiday times. (Sd1...Sd6)

8.13DIGITAL INPUTS POLARITY

The digital inputs polarity depends on "I#P" parameters: CL: the digital input is activated by closing the contact; OP: the digital input is activated by opening the contact.

9.INSTALLATION AND MOUNTING

The CX660 keyboard shall be mounted on vertical panel, in a 29x71 mm hole, and fixed using the special bracket supplied. The temperature range allowed for correct operation is 0+60 °C. Avoid places subject to strong vibrations, corrosive gases, excessive dirt or humidity. The same recommendations apply to probes. Let air circulate by the cooling holes.

10.ELECTRICAL CONNECTIONS

XM670K/XM679K is provided with screw terminal block to connect cables with a cross section up to 1,6 mm² for all the low voltage connection; the RS485, the LAN, the probes, the digital inputs and the keyboard. Other inputs, power supply and relays connections are provided with Faston connection (5.0 mm). Heat-resistant cables have to be used. Before connecting cables make sure the power supply complies with the instrument's requirements. Separate the probe cables from the power supply cables, from the outputs and the power connections. Do not exceed the maximum current allowed on each relay, in case of heavier loads use a suitable external relay. N.B. Maximum current allowed for all the loads is 16A.

10.1PROBE CONNECTIONS

The probes shall be mounted with the bulb upwards to prevent damages due to casual liquid infiltration. It is recommended to place the thermostat probe away from air streams to correctly measure the average room temperature. Place the defrost termination probe among the evaporator fins in the coldest place, where most ice is formed, far from heaters or from the warmest place during defrost, to prevent premature defrost termination.

11.RS485 SERIAL LINE

XM670K/XM679K is provided of a direct RS485 connection that allow the unit, to be linked to a network line ModBUS-RTU compatible with all dixell monitoring system.

12.USE OF THE PROGRAMMING "HOT KEY"

The XM units can UPLOAD or DOWNLOAD the parameter list from its own E2 internal memory to the "Hot Key" and vice-versa through a TTL connector.

12.1DOWNLOAD (FROM THE "HOT KEY" TO THE INSTRUMENT)

- Turn OFF the instrument by means of the ON/OFF key ,insert the "Hot Key" and then turn the unit ON
- 2. Automatically the parameter list of the "Hot Key" is downloaded into the controller memory, the "doL" message is blinking. After 10 seconds the instrument will restart working with the new parameters. At the end of the data transfer phase the instrument displays the following messages: "end" for right programming. The instrument starts regularly with the new programming. "err" for failed programming. In this case turn the unit off and then on if you want to restart the download again or remove the "Hot key" to abort the operation.

12.2UPLOAD (FROM THE INSTRUMENT TO THE "HOT KEY")

- 1. When the XM unit is ON, insert the "Hot key" and push

 key; the "uPL" message appears.
- The UPLOAD begins; the "uPL" message is blinking.
- Remove the "Hot Key".

At the end of the data transfer phase the instrument displays the following messages: "end " for right programming.

"err" for failed programming. In this case push "SET" key if you want to restart the programming again or remove the not programmed "Hot key".

13.ALARM SIGNALS

Message	Cause	Outputs	
"PON"	Keyboard enabled	Outputs unchanged	
"POF"	Keyboard locked	Outputs unchanged	
"rst"	Alarm reset	Alarm relay reset	
"nOP"	probe not present	Compressor output acc. to par. "Con" and "COF"	
"P1"	First probe failure	Compressor output acc. to par. "Con" and "COF"	
"P2"	Second probe failure	Defrost end is timed	
"P3"	Third probe failure	Outputs unchanged	
"P4"	Fourth probe failure	Outputs unchanged	
"P5"	Fifth probe failure	Outputs unchanged	
"P6"	Sixth probe failure	Outputs unchanged	
"HA"	Maximum temperature alarm	Outputs unchanged.	
"LA"	Minimum temperature alarm	Outputs unchanged.	
"HAd	Defrost high temperature	Outputs unchanged.	
"LAd"	Defrost low temperature	Outputs unchanged.	
"FAd"	Defrost low temperature	Outputs unchanged.	
"HAF"	Fan high temperature	Outputs unchanged.	
"LAF"	Fan high temperature	Outputs unchanged.	
"StP"	Stop due to regulation pauses (Sti and	Compressor and valve OFF	
	Std parameters)		
"MSn"	Stop due to maximum number of	Compressor and valve OFF	
	regulation pauses		
"PAL"	Lock due to pressure switch	All outputs OFF.	
"rtc"	RTC wrongly configured	Outputs unchanged	
"rtf"	RTC failure	Outputs unchanged	
"dA"	Door open	Compressor and fans restarts according to rrd and	
"FA!!	E to a tale on	odc	
"EA"	External alarm	Output unchanged.	
"CA"	Serious external alarm (i1F=bAL)	All outputs OFF.	
"LOP"	EEPROM failure	All outputs OFF.	
	Minimum operating pressure reached	according to dML	
"MOP"	Maximum operating pressure reached	according to dML	
"LSH"	Minimum superheat alarm	Valve closed	
"MSH"	Maximum superheat alarm	outputs unchanged	

13.1 "EE" ALARM

The **dixcll** instruments are provided with an internal check for the data integrity. Alarm "EE" flashes when a failure in the memory data occurs. In such cases the alarm output is enabled.

ALARM RECOVERY

Probe alarms: "P1" (probe1 faulty), "P2", "P3", "P4", "P5", "P6"; they automatically stop 10s after the probe restarts normal operation. Check connections before replacing the probe. Temperature alarms "HA", "LA", "HAd", "LAF", "LAF" automatically stop as soon as the thermostat temperature returns to normal values or when the defrost starts. External alarms "EAL", "BAL" stop as soon as the external digital input is disabled.

14.TECHNICAL DATA

CX660 keyboard

Housing: self extinguishing ABS. **Case:** CX**660** facia 35x77 mm; depth 18mm

Mounting: panel mounting in a 29x71 mm panel cut-out

Protection: IP20; Frontal protection: IP65 Power supply: from XM600K power module Display: 3 digits, red LED, 14,2 mm high;

Optional output: buzzer

Power modules

Case: 8 DIN

Connections: Screw terminal block ≤ 1,6 mm² heat-resistant wiring and 5.0mm Faston

Power supply: depending on the model 12Vac - 24Vac - 110Vac \pm 10% - 230Vac \pm 10% or

90÷230Vac with switching power supply. **Power absorption:** 9VA max.

Inputs: up to 6 NTC/PTC/Pt1000 probes Digital inputs: 3 free of voltage

Relay outputs: <u>Total current on loads MAX. 16A</u> Solenoid Valve: relay SPST 5(3) A, 250Vac

defrost: relay SPST 16 A, 250Vac fan: relay SPST 8 A, 250Vac light: relay SPST 16 A, 250Vac alarm: SPDT relay 8 A, 250Vac

alarm: SPDT relay 8 A, 250Vac

Aux: SPST relay 8 A, 250Vac

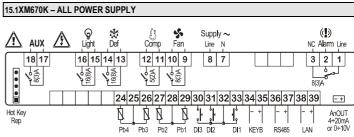
Valve output: a.c. output up to 30W (Only XM679K)

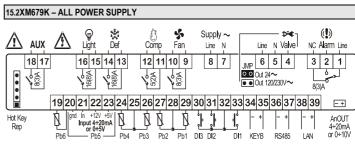
Optional output (AnOUT) DEPENDING ON THE MODELS:

PWM / Open Collector outputs: PWM or 12Vdc max 40mA

• Analog output: 4÷20mA or 0÷10V Serial output: RS485 with ModBUS - RTU and LAN

Data storing: on the non-volatile memory (EEPROM). Kind of action: 1B. Pollution grade: normal Software class: A. Operating temperature: $0 \div 60$ °C.


Storage temperature: -25÷60 °C. Relative humidity: 20+85% (no condensing).


Measuring and regulation range:

NTC probe: $-40 \div 110^{\circ}$ C (-58 $\div 230^{\circ}$ F). PTC probe: $-50 \div 150^{\circ}$ C (-67 $\div 302^{\circ}$ F) Pt1000 probe: $-100 \div 100^{\circ}$ C (-148 $\div 212^{\circ}$ F)

Resolution: 0,1 °C or 1 °C or 1 °F (selectable). Accuracy (ambient temp. 25°C): ±0,5 °C ±1 digit

15.CONNECTIONS

NOTE: the jumper indicated as JMP is inside the case of the controller. This jumper has to be closed only in case of driving 24Vac valve.

16.DEFAULT SETTING VALUES

Lab	Val	Menù	Description	Range
SEt	2.0		Set point	LS - US
Regula	tion			
Ну	2.0	Pr1	Differential	[0.1°C ÷ 25.5°C] [1°F ÷ 45°F]
Int	150	Pr1	Integral time for room temperature regulation	0 ÷ 255 s
CrE	n	Pr1	Continuous regulation activation	n(0) – Y(1)
LS	-30	Pr2	Minimum set point	[-55.0°C ÷ SET] [-67°F ÷ SET]
US	20	Pr2	Maximum set point	[SET ÷ 150.0°C] [SET ÷ 302°F]
odS	0	Pr1	Outputs activation delay at start up	0 ÷ 255 (min.)

AC	0	Pr1	Anti-short cycle delay	0 ÷ 60 (min.)
CCt	0.0	Pr2	Continous cycle duration	0 ÷ 24.0(144) (hour.10min)
ccs	2.0	Pr2	Continuous cycle set point	[-55.0°C ÷ 150,0°C] [-67°F ÷ 302°F]
Con	15	Pr2	Compressor ON time with faulty probe	0 ÷ 255 (min.)
CoF	30	Pr2	Compressor OFF time with faulty probe	0 ÷ 255 (min.)
CF	°C	Pr2	Measurement unit: Celsius , Fahrenheit	°C(0) - °F(1)
PrU	rE	Pr2	Pressure Mode	rE(0) - Ab(1)
PMU	bAr	Pr2	Pressure measurement unit	bAr(0) – PSI(1) - MPA(2)
PMd	PrE	Pr2	Pressure displaying mode: temperature or pressure	tEM(0) - PrE(1)
rES	dE	Pr2	Resolution (only °C) : decimal, integer	dE(0) - in(1)
Lod	P1	Pr2	Local display: default display	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5) - P6(6) - tEr(7) - dEF(8)
rEd	P1	Pr2	Remote display: default display	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5) - P6(6) - tEr(7) - dEF(8)
dLy	0	Pr1	Display delay	0 ÷ 24.0(144) (Min.10s)
rPA	P1	Pr1	Regulation probe A	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5)
rPb	nΡ	Pr1	Regulation probe B	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5)
rPE	100	Pr1	Virtual probe percentage (room temperature)	0 ÷ 100 (100=rPA, 0=rPb)
Electro	nic Ex	pansion \	/alve	
Fty	404	Pr1	Kind of gas	R22(0) - 134(1) - 404(2) - 407(3) - 410(4) - 507(5) - CO2(6)
SSH	8.0	Pr1	Superheat set point	[0.1°C ÷ 25.5°C] [1°F ÷ 45°F]
СуР	6	Pr1	Cycle Period	1 ÷ 15 s
				FO 400 00 000 F40F 400
Pb	5.0	Pr1	Proportional band for superheat regulator	[0.1°C ÷ 60.0 °C] [1°F ÷ 108 °F]
Pb rS	5.0	Pr1 Pr1	· ·	
			regulator Band Offset for superheat	°F] [-12.0°C ÷ 12.0°C] [-12°C ÷
rS	0.0	Pr1	regulator Band Offset for superheat regulator Integration time for superheat	°F] [-12.0°C ÷ 12.0°C] [-12°C ÷ 12°C] [-21°F ÷ 21°F]
rS	0.0	Pr1	regulator Band Offset for superheat regulator Integration time for superheat regulator	°F] [-12.0°C ÷ 12.0°C] [-12°C ÷ 12°C] [-21°F ÷ 21°F] 0 ÷ 255 s
rS inC PEO	0.0 120 50	Pr1 Pr1 Pr1	regulator Band Offset for superheat regulator Integration time for superheat regulator Probe error opening percentage Probe error delay before	°F] [-12.0°C + 12.0°C] [-12°C + 12°C] [-21°F + 21°F] 0 ÷ 255 s 0 + 100
rS inC PEO PEd	0.0 120 50 On	Pr1 Pr1 Pr1 Pr1	regulator Band Offset for superheat regulator Integration time for superheat regulator Probe error opening percentage Probe error delay before stopping regulation	°F] [-12.0°C ÷ 12.0°C] [-12°C ÷ 12°C] [-21°F ÷ 21°F] 0 ÷ 255 s 0 ÷ 100 0 ÷ 239 s - On(240)
rS inC PEO PEd OPE	0.0 120 50 On 85	Pr1 Pr1 Pr1 Pr1 Pr1	regulator Band Offset for superheat regulator Integration time for superheat regulator Probe error opening percentage Probe error delay before stopping regulation Start opening percentage	°F] [-12.0°C ÷ 12.0°C] [-12°C ÷ 12°C] [-21°F ÷ 21°F] 0 ÷ 255 s 0 ÷ 100 0 ÷ 239 s - On(240) 0 ÷ 100
rS inC PEO PEd OPE SFd	0.0 120 50 On 85 1.3	Pr1 Pr1 Pr1 Pr1 Pr1 Pr1	regulator Band Offset for superheat regulator Integration time for superheat regulator Probe error opening percentage Probe error delay before stopping regulation Start opening percentage Start function duration Opening percentage after defrost phase Post defrost function duration	°F] [-12.0°C ÷ 12.0°C] [-12°C ÷ 12°C] [-21°F ÷ 21°F] 0 ÷ 255 s 0 ÷ 100 0 ÷ 239 s - On(240) 0 ÷ 100 0 ÷ 42.0(252) (min.10sec)
rS inC PEO PEd OPE SFd OPd	0.0 120 50 On 85 1.3	Pr1 Pr1 Pr1 Pr1 Pr1 Pr1 Pr1 Pr1	regulator Band Offset for superheat regulator Integration time for superheat regulator Probe error opening percentage Probe error delay before stopping regulation Start opening percentage Start function duration Opening percentage after defrost phase Post defrost function duration Maximum opening percentage at normale functioning	°F] [-12.0°C + 12.0°C] [-12°C + 12°C] [-21°F + 21°F] 0 ÷ 255 s 0 ÷ 100 0 ÷ 239 s - On(240) 0 ÷ 100 0 ÷ 42.0(252) (min.10sec) 0 ÷ 100
rS inC PEO PEd OPE SFd OPd Pdd MnF	0.0 120 50 On 85 1.3 100	Pri	regulator Band Offset for superheat regulator Integration time for superheat regulator Probe error opening percentage Probe error delay before stopping regulation Start opening percentage Start function duration Opening percentage after defrost phase Post defrost function duration Maximum opening percentage at normale functioning Delay before stopping valve regulation	°F] [-12.0°C + 12.0°C] [-12°C + 12°C] [-21°F + 21°F] 0 ÷ 255 s 0 ÷ 100 0 ÷ 239 s - On(240) 0 ÷ 100 0 ÷ 42.0(252) (min.10sec) 0 ÷ 100 0 ÷ 42.0(255) (min.10sec) 0 ÷ 100 0 ÷ 42.0(255) (min.10sec)
rS inC PEO PEd OPE SFd OPd Pdd MnF dCL Fot	0.0 120 50 On 85 1.3 100 1.3 100 0	Pri	regulator Band Offset for superheat regulator Integration time for superheat regulator Probe error opening percentage Probe error delay before stopping regulation Start opening percentage Start function duration Opening percentage after defrost phase Post defrost function duration Maximum opening percentage at normale functioning Delay before stopping valve regulation Forced opening percentage	°F] [-12.0°C ÷ 12.0°C] [-12°C ÷ 12°C] [-21°F ÷ 21°F] 0 ÷ 255 s 0 + 100 0 ÷ 239 s - On(240) 0 + 100 0 ÷ 42.0(252) (min.10sec) 0 + 100 0 ÷ 42.0(255) (min.10sec) 0 + 100 0 ÷ 255 s 0 ÷ 100
rS inC PEO PEd OPE SFd OPd Pdd MnF	0.0 120 50 On 85 1.3 100 1.3	Pri	regulator Band Offset for superheat regulator Integration time for superheat regulator Probe error opening percentage Probe error delay before stopping regulation Start opening percentage Start function duration Opening percentage after defrost phase Post defrost function duration Maximum opening percentage at normale functioning Delay before stopping valve regulation	°F] [-12.0°C + 12.0°C] [-12°C + 12°C] [-21°F + 21°F] 0 + 255 s 0 + 100 0 + 239 s - On(240) 0 + 100 0 + 42.0(252) (min.10sec) 0 + 100 0 + 42.0(252) (min.10sec) 0 + 100 0 + 255 s 0 + 100 - "nu"(101) PP(0) - LAN(1) BAR : [PrM=rEL] -1.0 + P20 [PRM=Abs] 0 + P20 QKP : [PrM=rEL] -10 + P20 dKP : [PrM=rEL] -10 + P20
rS inC PEO PEd OPE SFd OPd Pdd MnF dCL Fot	0.0 120 50 On 85 1.3 100 1.3 100 0 nu	Pri	regulator Band Offset for superheat regulator Integration time for superheat regulator Probe error opening percentage Probe error delay before stopping regulation Start opening percentage Start function duration Opening percentage after defrost phase Post defrost function duration Maximum opening percentage at normale functioning Delay before stopping valve regulation Forced opening percentage Type of pressure transducer Probe value at 4 mA or at 0V	°F] [-12.0°C + 12.0°C] [-12°C + 12°C] [-21°F + 21°F] 0 + 255 s 0 + 100 0 + 239 s - On(240) 0 + 100 0 + 42.0(252) (min.10sec) 0 + 100 0 + 42.0(252) (min.10sec) 0 + 100 0 + 255 s 0 + 100 - "nu"(101) PP(0) - LAN(1) BAR : [PrM=rEL] -1.0 + P20 [PRM=Abs] 0.0 + P20 PSI : [PrM=rEL] -14 + P20 [PRM=Abs] 0 + P20
rS inC PEO PEd OPE SFd OPd Pdd MnF dCL Fot tPP	0.0 120 50 On 85 1.3 100 0 nu PP -0.5	Pr1	regulator Band Offset for superheat regulator Integration time for superheat regulator Probe error opening percentage Probe error delay before stopping regulation Start opening percentage Start function duration Opening percentage after defrost phase Post defrost function duration Maximum opening percentage at normale functioning Delay before stopping valve regulation Forced opening percentage Type of pressure transducer Probe value at 4 mA or at 0V Probe value at 20 mA or at 5V Lower pressure limit for	°F] [-12.0°C + 12.0°C] [-12°C + 12°C] [-21°F + 21°F] 0 + 255 s 0 + 100 0 + 239 s - On(240) 0 + 100 0 + 42.0(252) (min.10sec) 0 + 100 0 + 42.0(252) (min.10sec) 0 + 100 0 + 255 s 0 + 100 - "nu"(101) PP(0) - LAN(1) BAR : [PrM=rEL] -1.0 + P20 [PRM=Abs] 0.0 + P20 PSI : [PrM=rEL] -10 + P20 [PRM=Abs] 0 + P20 dKP : [PrM=rEL] -10 + P20 [PRM=Abs] 0 + P20 BAR : [PrM=rEL] -10 + P20 [PRM=Abs] 0 + P20 BAR : [PrM=rEL] -10 + P20 [PRM=Abs] 0 + P20 BAR : [PrM=rEL] -10 + P20 [PRM=Abs] 0 + P20 BAR : [PrM=rEL] -10 + P20 [PRM=Abs] PA4 + 50.0 PSI : [PrM=rEL] PA4 + 725 [PrM=Abs] PA4 + 725 [PrM=Abs] PA4 + 725 [PrM=RL] PA4 + 725 [PrM=RL] PA4 + 725
rS inC PEO PEd OPE SFd OPd Pdd MnF dCL Fot tPP	0.0 120 50 On 85 1.3 100 0 nu PP -0.5	Pr1	regulator Band Offset for superheat regulator Integration time for superheat regulator Probe error opening percentage Probe error delay before stopping regulation Start opening percentage Start function duration Opening percentage after defrost phase Post defrost function duration Maximum opening percentage at normale functioning Delay before stopping valve regulation Forced opening percentage Type of pressure transducer Probe value at 4 mA or at 0V	°F] [-12.0°C + 12.0°C] [-12°C + 12°C] [-21°F + 21°F] 0 + 255 s 0 + 100 0 + 239 s - On(240) 0 + 100 0 + 42.0(252) (min.10sec) 0 + 100 0 + 42.0(252) (min.10sec) 0 + 100 0 + 255 s 0 + 100 - "nu"(101) PP(0) - LAN(1) BAR : [PrM=rEL] -1.0 + P20 [PRM=Abs] 0.0 + P20 PSI : [PrM=rEL] -10 + P20 [PRM=Abs] 0 + P20 BAR : [PrM=rEL] -10 + P20 [PRM=Abs] 0 + P20 BAR : [PrM=rEL] -10 + P20 [PRM=Abs] 0 + P20 BAR : [PrM=rEL] -10 + P20 [PRM=Abs] 0 + P20 BAR : [PrM=rEL] -10 + P20 [PRM=Abs] 0 + P20 BAR : [PrM=rEL] -10 + P20 [PRM=Abs] 0 + P20 BAR : [PrM=rEL] -10 + P20 [PRM=Abs] 0 + P20 BAR : [PrM=rEL] -10 + P20 [PRM=Abs] -10 + P20

LOP	-0.5	Pr1	Lowest operating pressure threshold	PA4 ÷ MOP
dML	30	Pr1	Delta MOP-LOP opening variation	0 ÷ 100
MSH	80.0	Pr1	Maximum superheat alarm threshold	[LSH ÷ 80,0°C] [LSH ÷ 144°F]
LSH	1.0	Pr1	Minimum superheat alarm threshold	[0.0 ÷ MSH °C] [0 ÷ MSH °F]
SHy	0.5	Pr1	Superheat alarm hysteresis	[0.1°C ÷ 25.5°C] [1°F ÷ 45°F]
SHd	3.0	Pr1	Superheat alarm activation delay	0 ÷ 42.0(252) (min.10sec)
FrC	100	Pr1	Fast-recovery costant	0 ÷ 100
Defrost	t			
dPA	P2	Pr1	Defrost probe A	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5)
dPb	nΡ	Pr1	Defrost probe B	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5)
dPE	100	Pr1	Virtual probe percentage (defrost temperature)	0 ÷ 100 (100=dPA, 0=dPb)
tdF	EL	Pr1	Defrost type	EL(0) - in(0)
EdF	in	Pr1	Defrost mode: Clock or interval	rtc(0) - in(1)
Srt	150	Pr1	Heater set point during defrost	[-55.0°C ÷ 150°C] [-67°F ÷ 302°F]
Hyr	2.0	Pr1	Differential for heater	[0.1°C ÷ 25.5°C] [1°F ÷ 45°F]
tod	255	Pr1	Time out for heater	0 ÷ 255 (min.)
dtP	0.1	Pr1	Minimum temperature difference to start defrost	[0.1°C ÷ 50.0°C] [1°F ÷ 90°F]
ddP	60	Pr1	Delay before starting defrost	0 ÷ 60 (min.)
d2P	n	Pr1	Defrost with two probes	n(0) – Y(1)
dtE	8.0	Pr1	Defrost termination temperature (Probe A)	[-55.0°C ÷ 50.0°C] [-67°F ÷ 122°F]
dtS	8.0	Pr1	Defrost termination temperature (Probe B)	[-55.0°C ÷ 50.0°C] [-67°F ÷ 122°F]
idF	6	Pr1	Interval between defrosts	0 ÷ 120 (hours)
MdF	30	Pr1	Defrost Maximum duration	0 ÷ 255 (min.)
dSd	0	Pr1	Start defrost delay	0 ÷ 255 (min.)
dFd	it	Pr1 Pr1	Display during defrost	rt(0) - it(1) - SEt(2) - dEF(3)
dAd Fdt	30 0	Pr1	Defrost display time out Drain down time	0 ÷ 255 (min.) 0 ÷ 255 (min.)
dPo	n	Pr1	Defrost at start-up	n(0) – Y(1)
dAF	0.0	Pr1	Defrost delay after continuous	0 ÷ 24.0(144) (hours.10min)
	0.0		cycle	0 · 24.5(144) (110013.1011111)
Fan FPA	P2	Pr1	Fan probe A	nP(0) - P1(1) - P2(2) - P3(3) -
FPb	nP	Pr1	Fan probe B	P4(4) - P5(5) nP(0) - P1(1) - P2(2) - P3(3) -
FPE	100	Pr1	Virtual probe percentage (fan	P4(4) - P5(5) 0 ÷ 100 (100=FPA, 0=FPb)
FnC	O-n	Pr1	management) Fan operating mode	C-n(0) - O-n(1) - C-y(2) - O-
Fnd	10	Pr1	Fan delay after defrost	y(3) 0 ÷ 255 (min.)
FCt	10	Pr1	Temperature differential to	0 ÷ 255 (min.) [0.0°C ÷ 50.0°C] [0°F ÷ 90°F]
FSt	2.0	Pr1	avoid short cycles of fans Fan stop temperature	[-55.0°C ÷ 50.0°C] [-67°F ÷
FHy	1.0	Pr1	Fan stop differential	122°F] [0.1°C ÷ 25.5°C] [1°F ÷ 45°F]
Fod	0	Pr1	Fan activation time after defrost (without compressor)	0 ÷ 255 (min.)
Fon	0	Pr1	Fan ON time	0÷15 (min.)
FoF	0	Pr1	Fan OFF time	0÷15 (min.)
trA	UAL	Pr2	Kind of regulation for modulating output	UAL(0) - rEG(1) - AC(2)
SOA	80	Pr2	Fixed speed for fan	AMi ÷ AMA
SdP	30.0	Pr2	Default Dew Point value	[-55.0°C ÷ 50.0°C] [-67°F ÷ 122°F]
				122 []

PbA	5.0	Pr2	Proportional band for modulating output	[0.1°C ÷ 25.5°C] [1°F ÷ 45°F]
AMi	0	Pr2	Minimum output for modulating	0 ÷ AMA
AWII	- 0	FIZ	output	U ÷ AIVIA
AMA	100	Pr2	Maximum output for modulating output	AMi ÷ 100
AMt	200	Pr2	Time with fan at maximum speed	0 ÷ 255 s
Alarm				
rAL	P1	Pr1	Probe for temperature alarm	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5) - tEr(6)
ALC	Ab	Pr1	Temperature alarm configuration	rE(0) - Ab(1)
ALU	10	Pr1	High temperature alarm setting	[0.0°C ÷ 50.0°C o ALL ÷ 150.0°] [0°F ÷ 90°F o ALL ÷ 302°F]
ALL	-30	Pr1	Low temperature alarm setting	[0.0°C ÷ 50.0°C o -55,0°C ÷ ALU] [0°F ÷ 90°F o -67°F ÷ ALU°F]
АНу	1.0	Pr1	Differential for temperature alarm	[0.1°C ÷ 25.5°C] [1°F ÷ 45°F]
ALd	15	Pr1	Temperature alarm delay	0 ÷ 255 (min.)
dLU	150	Pr2	High temperature alarm setting (defrost probe)	[0.0°C ÷ 50.0°C o dLL ÷ 150.0°] [0°F ÷ 90°F o dLL ÷ 302°F]
dLL	-55	Pr2	Low temperature alarm setting (defrost probe)	[0.0°C ÷ 50.0°C o -55,0°C ÷ dLU] [0°F ÷ 90°F o -67°F ÷ dLU°F]
dAH	1.0	Pr2	Differential for temperature alarm (defrost probe)	[0.1°C ÷ 25.5°C] [1°F ÷ 45°F]
ddA	15	Pr2	Temperature alarm delay (defrost probe)	0 ÷ 255 (min.)
FLU	150	Pr2	High temperature alarm setting (fan probe)	[0.0°C ÷ 50.0°C o FLL ÷ 150.0°] [0°F ÷ 90°F o FLL ÷ 302°F]
FLL	-55	Pr2	Low temperature alarm setting (fan probe)	[0.0°C ÷ 50.0°C o -55,0°C ÷ FLU] [0°F ÷ 90°F o -67°F ÷ FLU°F]
FAH	1.0	Pr2	Differential for temperature alarm (fan probe)	[0.1°C ÷ 25.5°C] [1°F ÷ 45°F]
FAd	15	Pr2	Temperature alarm delay (fan probe)	0 ÷ 255 (min.)
dAo	1.3	Pr1	Delay of temperature alarm at start-up	0 ÷ 24.0(144) (hours.10min)
EdA	30	Pr1	Alarm delay at the end of defrost	0 ÷ 255 min
dot	15	Pr1	Temperature alarm exclusion after door open	0 ÷ 255 min
Sti	1.3	Pr2	Stop regulation interval	"nu"(0) ÷ 24.0(144) (hour.10min)
Std	3	Pr2	Stop duration	1 ÷ 255 min
nMS	0	Pr2	Maximum number of pauses before locking regulation (0=not used)	"nu"(0) ÷ 255
oA6	AUS	Pr2	Sixth relay output configuration	CPr(0) - dEF(1) - FAn(2) - ALr(3) - LiG(4) - AUS(5) - db(6) - OnF(7)
oA7	ALr	Pr2	Modulating output configuration (if CoM=oA7)	CPr(0) - dEF(1) - FAn(2) - ALr(3) - LiG(4) - AUS(5) - db(6) - OnF(7)
CoM	Cur	Pr2	Modulating output configuration	CUr(0) - tEn(1) - PM5(2) - PM6(3) - oA7(4)
АОР	cL	Pr1	Alarm relay polarity	OP(0) - CL(1)
iAU	n	Pr1	Auxiliary output indipendent	n(0) – Y(1)
		Digital	from ON/OFF state	
;4 D	ol.	Inputs Pr1	Digital input 4 palarity	OP(A) CL(4)
i1P i1F	dor	Pr1	Digital input 1 polarity Digital input 1 configuration	OP(0) - CL(1) EAL(0) - bAL(1) - PAL(2) - dor(3) - dEF(4) - AUS(5) -LiG (6) - OnF(7) - Htr(8) - FHU(9) -
d1d	15	Pr1	Digital input 1 activation delay	ES(10) - Hdy(11) 0 ÷ 255 (min.)
i2P	cL	Pr1	Digital input 1 activation delay Digital input 2 polarity	0 ÷ 255 (min.) OP(0) - CL(1)
141	CL	L '''	Digital input 2 polarity	[OF(0) - OL(1)

i2F	LiG	Pr1	Digital input 2 configuration	EAL(0) - bAL(1) - PAL(2) - dor(3) - dEF(4) - AUS(5) -LiG (6) - OnF(7) - Htr(8) - FHU(9) - ES(10) - Hdy(11)
d2d	5	Pr1	Digital input 2 activation delay	0 ÷ 255 (min.)
i3P	cL	Pr1	Digital input 3 polarity	OP(0) - CL(1)
i3F	ES	Pr1	Digital input 3 configuration	EAL(0) - bAL(1) - PAL(2) - dor(3) - dEF(4) - AUS(5) -LiG (6) - OnF(7) - Htr(8) - FHU(9) - ES(10) - Hdy(11)
d3d	0	Pr1	Digital input 3 activation delay	0 ÷ 255 (min.)
nPS	15	Pr1	Number of pressure switch activation before lock	0 ÷ 15
OdC	F-C	Pr1	Compressor and fan status when open door	no(0) - FAn(1) - CPr(2) - F- C(3)
rrd	30	Pr1	Outputs restart after door open alarm	0 ÷ 255 (min.)
		Clock	didilli	
СЬР	Υ	Pr1	Clock process	n(0) V(1)
			Clock presence	n(0) – Y(1)
Hur		Pr1	Current hour	
Min		Pr1	Current minutes	
dAY		Pr1	Current day	Sun(0) - SAt(6)
Hd1	nu	Pr1	First weekly day	Sun(0) - SAt(6) - nu(7)
Hd2	nu	Pr1	Second weekly day	Sun(0) - SAt(6) - nu(7)
Hd3	nu	Pr1	Third weekly day	Sun(0) - SAt(6) - nu(7)
ILE	0.0	Pr1	Energy saving cycle start during	0 - 23.5(143) (hours.10min)
			workdays Energy saving cycle length	0 - 23.3(143) (110u13.1011111)
dLE	0.0	Pr1	during workdays	0 ÷ 24.0(144) (hours.10min)
ISE	0.0	Pr1	Energy saving cycle start during holidays	0 - 23.5(143) (hours.10min)
dSE	0.0	Pr1	Energy saving cycle length during holidays	0 ÷ 24.0(144) (hours.10min)
HES	0.0	Pr1	Temperature increasing during Energy Saving cycle	[-30.0°C ÷ 30.0°C] [-54°F ÷ 54°F]
Ld1	nu	Pr1	Workdays First defrost start	0.0 ÷ 23.5(143) - nu(144) (hours.10min)
Ld2	nu	Pr1	Workdays Second defrost start	Ld1 ÷ 23.5(143) - nu(144) (hours.10min)
Ld3	nu	Pr1	Workdays Third defrost start	Ld2 ÷ 23.5(143) - nu(144) (hours.10min)
Ld4	nu	Pr1	Workdays Fourth defrost start	Ld3 ÷ 23.5(143) - nu(144) (hours.10min)
Ld5	nu	Pr1	Workdays Fifth defrost start	Ld4 ÷ 23.5(143) - nu(144) (hours.10min)
Ld6	nu	Pr1	Workdays Sixth defrost start	Ld5 ÷ 23.5(143) - nu(144) (hours.10min)
Sd1	nu	Pr1	Holidays First defrost start	0.0 ÷ 23.5(143) - nu(144) (hours.10min)
Sd2	nu	Pr1	Holidays Second defrost start	Sd1 ÷ 23.5(143) - nu(144) (hours.10min)
Sd3	nu	Pr1	Holidays Third defrost start	Sd2 ÷ 23.5(143) - nu(144) (hours.10min)
Sd4	nu	Pr1	Holidays Fourth defrost start	Sd3 ÷ 23.5(143) - nu(144) (hours.10min)
Sd5	nu	Pr1	Holidays Fifth defrost start	Sd4 ÷ 23.5(143) - nu(144) (hours.10min)
Sd6	nu	Pr1	Holidays Sixth defrost start	Sd5 ÷ 23.5(143) - nu(144)
Energy	/ Savin	n		(hours.10min)
ESP	P1	9 Pr1	Energy saving probe selection	nP(0) - P1(1) - P2(2) - P3(3) -
HES	0.0	Pr1	Temperature increasing during	P4(4) - P5(5) - tEr(6) [-30.0°C ÷ 30.0°C] [-54°F ÷
PEL	n	Pr1	Energy Saving Energy saving activation when	54°F] n(0) – Y(1)
L.A.N.			Light switched off	(0)
LMd		Pr2	Defrost Synchronisation	n(0) – Y(1)
	у	Pr2	•	
dEM	у		Defrost end Synchronisation	n(0) – Y(1)
LSP	n	Pr2	SET-POINT Synchronisation	n(0) – Y(1)

LdS	n	Pr2	Display Synchronisation (temperature sent via LAN)	n(0) – Y(1)
LOF	n	Pr2	ON/OFF Synchronisation	n(0) – Y(1)
LLi	у	Pr2	Light Synchronisation	n(0) – Y(1)
LAU	n	Pr2	AUX Synchronisation	n(0) – Y(1)
LES	n	Pr2	Energy Saving Synchronisation	n(0) – Y(1)
LSd	n	Pr2	Remote probe displaying	n(0) – Y(1)
LPP	n	Pr2	Pressure value sent in LAN	n(0) – Y(1)
StM	n	Pr2	Cooling request from LAN enable compressor relay	n(0) – Y(1)
Probe	Config	urations		
P1C	NtC	Pr2	P1 configuration	nP(0) - Ptc(1) - ntc(2) - PtM(3)
ot	0.0	Pr2	P1 calibration	[-12,0°C ÷ 12,0°C] [-21°F ÷ 21°F]
P2C	NtC	Pr2	P2 configuration	nP(0) - Ptc(1) - ntc(2) - PtM(3)
οE	0.0	Pr2	P2 calibration	[-12,0°C ÷ 12,0°C] [-21°F ÷ 21°F]
P3C	NtC	Pr2	P3 configuration	nP(0) - Ptc(1) - ntc(2) - PtM(3)
о3	0.0	Pr2	P3 calibration	[-12,0°C ÷ 12,0°C] [-21°F ÷ 21°F]
P4C	NtC	Pr2	P4 configuration	nP(0) - Ptc(1) - ntc(2) - PtM(3)
04	0.0	Pr2	P4 calibration	[-12,0°C ÷ 12,0°C] [-21°F ÷ 21°F]
P5C	420	Pr2	P5 configuration	nP(0) - Ptc(1) - ntc(2) - PtM(3) - 420(4) - 5Vr(5)
05		!. /_!I	_	120°C ÷ 120°C1 [31°F ÷
P6C		Via dell'Indi	S.p.a. ustria, 27 - 32010 Pieve d'Alpago (BL) ITA	ALY PtM(3)
	tel.		- 98 33 - fax +39 - 0437 - 98 93 13	1°F ÷
06		J.//www.uixe	ii.com L-maii. uixeii@uixeii.com	
Service	•			
CLt		Pr1	ON/OFF percentage (C.R.O.)	(read only)
tMd		Pr1	Time remaining before next defrost activation (only for interval defrost)	(read only)
LSn		Pr1	Number of devices in LAN	1 ÷ 8 (read only)
LAn		Pr1	List of address of LAN devices	1 ÷ 247 (read only)
		Other		
Adr	1	Pr1	Modbus address	1 ÷ 247
rEL		Pr1	Firmware release	(read only)
Ptb	4	Pr1	Parameter table	(read only)
Pr2		Pr1	PR2 menu access	(read only)